We previously described some of the ways in which life sciences companies are exploring the potential of IBM’s supercomputer, ‘Watson®’, to assist with product development and disease treatment.  Such uses raise important questions about how Watson and other software are treated under medical device regulations.  These questions are particularly important as tech companies find themselves wading into the healthcare arena and may be unaware of the heavily regulated industry they are entering.

The regulation of medical software has been controversial and subject to the vagaries of guidelines and subjective interpretations by the regulatory authorities. We consider below the regulatory minefield and the circumstances in which a software is regulated as a medical device in the EU and U.S.

EU

How is software regulated?

In the EU, a medical device means any instrument or other apparatus, including software, intended by the manufacturer to be used for human beings for the purpose of, among other things, diagnosis, prevention, monitoring, treatment or alleviation of disease. There is no general exclusion for software, and software may be regulated as a medical device if it has a medical purpose, meaning it is capable of appreciably restoring, correcting or modifying physiological functions in human beings. A case-by-case assessment is needed, taking account of the product characteristics, mode of use and claims made by the manufacturer. However, the assessment is by no means straightforward for software, which is particularly complex because, unlike classification of general medical devices, it is not immediately apparent how these parameters apply to software, given that software does not act on the human body to restore, correct or modify bodily functions.

As a result, software used in a healthcare setting is not necessarily a medical device. The issue is whether the software can be used as a tool for treatment, prevention or diagnosis of a disease or condition. For example, software that calculates anatomical sites of the body, and image enhancing software intended for diagnostic purposes, is generally viewed as a software medical device because it is used as a tool, over and above the healthcare professionals’ clinical judgment, in order to assist clinical diagnosis and treatment. For the same reason, software used for merely conveying or reviewing patient data is generally not a medical device.

What about Watson?

The main benefit of IBM’s cognitive computing software is its ability to analyse large amounts of data to develop knowledge about a disease or condition, rather than treatment options for an individual patient. Currently, its uses are largely limited to research and development. On the basis of these uses, the software may not be considered as having the medical purpose necessary for it to be classified as a medical device.

However, uses of the software that aim to enhance clinical diagnosis or treatment of a condition may potentially alter the regulatory status, especially if the function of the software goes beyond data capture and communication. Similarly, some of the new partnerships recently announced, described in our previous post, are aimed at developing personalised management solutions, or mobile coaching systems for patients. These may be viewed as having a medical purpose in view of the health-related information they acquire to provide informed feedback to the patient on self-help, or decision-making relating to the patient’s treatment plan. As the uses for Watson increase, and become more involved in treatment decisions, this change in regulatory status is likely to increase.

Will there be any change under the new Medical Device Regulations?

The EU legislative proposal for new medical device Regulations, which have reached broad agreement by the EU legislature but have not yet been adopted, contain additional provisions that specifically address software medical devices. Of particular relevance, software with a medical purpose of “prediction and prognosis” will be considered as coming within the scope of the Regulations. This means that software and apps that were previously excluded from being regulated, may in the future be “up-classified” and be susceptible to being regulated as medical devices. Along with a number of initiatives in the EU, the EU institutions recognize the importance of mHealth in the healthcare setting, and are seeking to ensure it is properly regulated as its use increases.

U.S.

How is software regulated?

In the United States, the Food and Drug Administration (FDA) has regulatory authority over medical devices. FDA considers a medical device to be an instrument or other apparatus, component, or accessory that is intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease in man or other animals, or that is intended to affect the structure or function of any man or other animal but which is not dependent on being metabolized (i.e., a drug) for achievement of that purpose.   FDA has issued a number of guidance documents to assist in identifying when software or mobile apps are considered to be medical devices.

One type of software FDA has not issued guidance on is Clinical Decision Support Software (CDSS). CDSS is software that utilizes patient information to assist providers in making diagnostic or treatment decisions. Until recently, CDSS was approached in a similar fashion to FDA’s framework for mobile apps. In other words, CDSS was viewed as existing on a continuum from being a Class II regulated medical device, to being subject to FDA’s enforcement discretion, to not being considered a medical device at all. On December 13, 2016, however, the 21st Century Cures Act was signed into law, clarifying the scope of FDA’s regulatory jurisdiction over stand-alone software products used in healthcare.

The 21st Century Cures Act contains a provision – Section 3060 – that explicitly exempts certain types of software from the definition of a medical device. As relevant for CDSS, the law excludes from the definition of a “device” software (unless the software is intended to “acquire, process, or analyze a medical image or a signal from an in vitro diagnostic device or a pattern or signal from a signal acquisition system”):

  1. Displaying, analyzing, or printing medical information about a patient or other medical information (such as peer-reviewed clinical studies and clinical practice guidelines);
  2. Supporting or providing recommendations to a health care professional about prevention, diagnosis, or treatment of a disease or condition; and
  3. Enabling health care professionals to independently review the basis for such recommendations so that the software is not primarily relied upon to make a clinical diagnosis or treatment decision regarding an individual patient.

Thus the Act generally excludes most CDSS from FDA jurisdiction. However, it is worth noting that FDA may bring CDSS back under its jurisdiction if it makes certain findings regarding: (1) the likelihood and severity of patient harm if the software does not perform as intended, (2) the extent to which the software is intended to support the clinical judgment of a health care professional, (3) whether there is a reasonable opportunity for a health care professional to review the basis of the information or treatment recommendation, and (4) the intended user and use environment.

What About Watson?

Based on this regulatory framework, IBM’s Watson would not generally be regulated as a medical device if simply used as a tool to assist physician review of medical data. In many uses, Watson is still dependent on human intervention and therefore does not make independent patient-specific diagnoses or treatment decisions. Importantly, statements about Watson also show that it is intended to be used simply as a tool by physicians and it is not intended that physicians rely primarily on Watson’s recommendations.

As such, in many applications, Watson is likely to be the kind of CDSS statutorily excluded from the definition of a medical device. However, as Watson and other forms of artificial intelligence advance and become capable of making or altering medical diagnoses or treatment decisions with little input or oversight from physicians, or transparency as to underlying assumptions and algorithms, these technologies will fall outside of the exclusion. As the use of such forms of artificial intelligence becomes more central to clinical decision-making, it will be interesting to see whether FDA attempts to take a more active role in its regulation, or if other agencies — such as the U.S. Federal Trade Commission — step up their scrutiny of such systems. Additionally, state laws may be implicated with regard to how such technology is licensed or regulated under state public health, consumer protection, and medical practice licensure requirements.