Improvements in the efficiency of clinical development is the highest priority for the innovative industry. And yet, costs associated with clinical trials, and delays in patient recruitment and retention, persist. Companies are continually on the look-out for ways of addressing these issues, and mHealth may be the answer. Digital technologies, and the integration of wearable health monitors with smartphones and apps, offer new opportunities for expediting product development. However, there are challenges with the widespread use of such technologies, which we discuss below.

How is mHealth used in clinical trials?

  • Patient recruitment and retention: It has been reported that 27% of the cost of development of a medicinal product is associated with patient recruitment, and only 1 in 20 patients recruited provide results that can be included in a regulatory dossier. This highlights the extent of the challenge companies face. Certain apps claim to provide an effective means of tracking potentially eligible patients through capturing valuable data and improving patient recruitment. For example, Clinical Trial Seek, My Clinical Study Buddy, and Study Scavenger provide patients and physicians with the ability to search trial information. Similarly, apps such as Lilly’s Oncology Resource enables healthcare professionals to search clinical trials in the oncology field to aid referrals.
  • Patient engagement: Patients are increasingly recognized as equal partners in clinical trials and drug development. Further, some say that better patient engagement leads to better outcomes and greater retention rates. A real-life example of this comes from the comparative Mobile Diabetes Intervention Study of 163 patients, which found that adding a mobile patient coaching app to treatment, together with personalized feedback on blood glucose data and lifestyle behaviors via smartphones, substantially lowered glycated haemoglobin levels for more than a year.  Wearable technology and patient-centric apps provide a great opportunity for pharmaceutical companies to seek this engagement during clinical trials. For example, Clinical Trials Mobile provides patient-specific information about participating in trials, how to prepare for visits and instructions on the study product. Momentum 3 provides similar information for investigators.
  • Real-time patient monitoring: The age-old process of having clinical staff and investigators recording patient information from various inputs on paper-based case report forms, then manually entering this information into a database, is fading into history. Electronic data capture (EDC) is rapidly becoming the new standard, yielding impressive productivity gains and helping to improve data accuracy. Continuous monitoring can also help researchers record treatment adherence. As a result, study sponsors can more accurately determine efficacy, and non-adhering patients can be filtered out. Continuous remote patient monitoring through apps also enables trial sponsors to more readily and accurately identify potential side effects. Such technologies are being integrated into trial designs. For example, Pfizer has developed a sensor-enabled remote patient monitoring system ahead of its planned use in a Phase III Parkinson’s disease trial in 2019. Wearables technologies can also be used to more easily integrate and collect quality of life data as part of the trial, and so support reimbursement decisions without conducting further studies.

Is it an app or a device?

As with any software used in the healthcare setting, it will be important to consider whether any such technology is a medical device under the relevant legislation and guidance.  In the EU, the new Medical Devices Regulations, when finalized, may change the classification of software used in the healthcare environment, which will mean more apps are classified as devices according to their intended medical purpose. The European Commission is also consulting on guidance to define the threshold for classification of a software medical device. Similarly, in the US, the FDA has recently published draft guidance on the evaluation of software as a medical device, and has issued final guidance on Medical Device Data Systems, Medical Image Storage Devices, and Medical Image Communications Devices.

While some companies shy away from such regulation, others are actively developing apps that will be classified as medical devices, presumably with the aim of ensuring confidence in the product. For example, Google has developed a health-tracking wristband, which it plans to position as a medical device for use by patients and clinical researchers.

Can this really make a difference?

The true value of the use of apps and digital technologies in clinical trials will depend on ease of use, relevance and accuracy, all of which may raise important legal issues. In particular, it should be recognized that data monitoring through remote digitalized technologies, moves clinical trials from an internally-contained to an external-uncontrolled clinical environment. There are, therefore, concerns about their use:

  • System integration: the technological capabilities are not yet fully integrated between the hardware (wearables) and software (apps and servers), and there is a lack of support for the analysis of massive data collection within clinical trials.
  • Standardization of regulatory requirements: appropriate standards should be established to facilitate inter-operability. However, this is hampered by the fact that regulatory rules and policies for mHealth have not kept pace with the technological advancement. It is unclear how and against what regulatory standards data collected from such devices and apps should be validated to support regulatory review. In the EU, whilst there has been a flurry of activity in relation to the assessment of apps, their application in a clinical trial setting has not been addressed. Moreover, mobile technologies and digital health are not referred to in the Clinical Trials Regulation, which is expected to come into operation in 2018. In contrast, in the US, the FDA consulted on guidance on the use of mobile technologies in clinical trials at the end of 2015, and on the use of electronic health records in clinical trials earlier this year.
  • Data security: most importantly, patients need to have confidence in the technology, and in particular, the security of their personal data and the accuracy of the data collected.

Despite these limitation, proof on concept has been shown: a recent report by the US Department of Health and Human Services found that the key impact of the use of mobile technologies so far recorded is on study duration and total costs. The report noted up to a 30% decline in study duration, and costs savings of as much as $6.1 million (up to 12 percent of cost per study) in a phase III study. It seems, therefore, that the future will be digital.